skip to main content


Search for: All records

Creators/Authors contains: "Zhu, Zhengzhe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 29, 2024
  2. null (Ed.)
    Abstract Augmented reality (AR) is a unique, hands-on tool to deliver information. However, its educational value has been mainly demonstrated empirically so far. In this paper, we present a modeling approach to provide users with mastery of a skill, using AR learning content to implement an educational curriculum. We illustrate the potential of this approach by applying this to an important but pervasively misunderstood area of STEM learning, electrical circuitry. Unlike previous cognitive assessment models, we break down the area into microskills—the smallest segmentation of this knowledge—and concrete learning outcomes for each. This model empowers the user to perform a variety of tasks that are conducive to the acquisition of the skill. We also provide a classification of microskills and how to design them in an AR environment. Our results demonstrated that aligning the AR technology to specific learning objectives paves the way for high quality assessment, teaching, and learning. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Augmented reality (AR) is a unique hands-on learning tool that can help students in a pervasively misunderstood area of STEM learning, electrical circuitry. AR technology can help with the construction and debugging of circuits, leading to independent learning and reduced assistance. In this paper, we introduce ARbits, a DIY, AR-compatible electrical circuitry toolkit for children. This toolkit exposes children to the concepts of circuitry at an early age, with components that are easy for little hands to handle. We anticipate that instructors at makerspaces can use our designs to fabricate multiple electrical components for children. 
    more » « less